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OPTIMUM MIXING OF GYROSCOPE AND STAR TRACKER DATA
J. E. Potter* and W. E. Vander Velde+
Massachusetts Instltute of Technology

Cambridge, Massachusetts

ABSTRACT

" The problem of optimum utilization of star tracker
data to monitor and correct for the drift of a gyro
stabllized orientational reference platform is addressed
using minimum variance estimation theory. The system
configuration 1s arranged to make the drift compensation
problem independent of base motion 1solation errors or
the dynamlcs of the platform servo drive system. A
complete analytic solution to the problem is given with
star tracker errors modeled as wide band nolse and gyro
drift rate modeled as a random walk. The time histories
of the required system gains and the error varlances are
calculated and plotted for the case of no prior information
regarding gyro drift rate or orientational error, and for
the case of no prior information on orientational error
but steady state knowledge of gyro drift rate due to previ-
ous star tracking. These results should be useful as a
gulde to the design of stellar-alded inertlal platforms
and as a reference agalnst which to compare thelr perform-
ance.
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INTRODUCTION

Among the possible means of holding an inertial
orlentation reference on board an aerospace vehicle, the
most useful techniques are gyroscope stabilization and
tracking the lines of sight to stars. Each technique ﬁas
its major strength and weakness - and these character-
istics tend to complement each other. The gyro proﬁideS‘
wlde bandwidth information about angular rotations with
respect to inertial space. A gimbaled platform servo-
driven to null the outputs of such gyros can maintalin an
inertial reference orlentation to good accuracy even in
the presence of high frequency rotations of the vehicle
which carries the platform. In long-term operation,
however, the gyro suffers from drift which, although it
may be a very small angular rate, becomes significant
when integrated over a long time. A star tracker, on the
other hand, senses the line of sight to a star and indicaéés
an inertial reference direction with a quality which does
not deteriorate with time. The bandwldth of a star tracker -
stabilized platform is, however, more restricted than that
of a gyro stabilized platform - and the attempt to increase
the bandwidth of such a system 1s lnevitably accompanied

by an lncreased transfer of detector and other noise.




The complementary characteristics of these two types
of stabilizatlon system lead one naturally to consider a
combination system: a gyro stabilized platform which pro-
vides wide band isolation from vehicle rotations, and a
star tracker which provides a long-term orientational refer-
ence. Such a system 1is shown in functional diagram form
.1n Fig. 1. The star tracker provides a nolsy measure of
the platform error angle. From this indication 1s derilved
a signal which produces a torque on the platform-mounted
gyro. The purpose of this commanded torque is to balance
the gyro drift as well as possible, and thus to maintain
the stabllization error small over the period of system
operation.

The problem to which this paper‘is addressed 1is the
design of the Drift Compensation Function as shown 1n
Fig. 1. What 1s ﬁhe bgst functional felationship to use
in deriving the gyro torquing signal from the star tracker
indication of error angle? And what are the best numerical
values of the parameters in this function? Statistical
filtering theory provides the answers to these questions
if "best" 1s interpreted as minimum RMS errors. Stellar-
aided inertlial systems have been dlscussed in previous
papers. Blumhagen1 selected the Drift Compensation Function

on an intultive basis and calculated the resulting per-



formance of the complete navigator. Dusek3 assumed that
the use of star tracking rendered gyro drift unimportant
and employed Kalman flltering to estimate accelerometef
blas. The contribution of this paper 1s an analytic
optimum solution to the problem of stellar monltoring of
a gyro stabllized platform with a fairly realistic mathe-
matical model of the physical situation. The analytilc
solution permits one to design the Drift Compensation
Function immediately for star trackers and gyroscopes of
any quality and for any degree of prior information about

the stabilization error and gyro drift rate.

THE MODEL OF THE PROBLEM

Maintalining an orientational reference is a three-
axls problem, but with the understanding that all three
axes are well stabiiized, the problem can be treated as
a set of three essentially uncoupled stabilization
problems. The single axils problemfis considered here.
The gyro stabilized platform involves the dynamics of
the servo loop which drives the gimbal-mounted platform
so as to null the output of the gyro. The platform
orientation may be in error due both to the failure of
this servo to hold the gyro output angle at null and to
the fact that an error might still exist even if the plat-

form were rotated to null the gyro output. The former is




T

the base motlon isolation error which 1s the responsibll-
ity of the gimbal drivg servo system. Thils system is

wlde band, and the base motion isolation function cannot
effectively be improved by use of star tracker data. The
second source of error, that which would exist even if

the gimbal drive servo brought the gyro output angle to
zero, will be called the stabllization reference error. It
is due to initlal condiltion errors and accumulated gyro
drift. This 1s the error which the star tracker 1s used

to control. The stabilization reference error is written

G, = ©5 ".99 + 8y (1)

The notation 1s defined in Flg. 1. This is the platform
error, GS—QP 9 with the gyro output angle, 9;3’ , added.
Addition of the known part of the stabilization error,e%s ’
eliminates the dynamics of base motion 1solati§n from the
problem. |

The dynamics of the gyro are trivial in this problem
which 1s concerned with long-term errors, so the rate of
change of gyro angle 1s that of the platform, plus the
precession due to the torquing signal, plus the drift rate, D.

G%bzz 69;;‘*"F'*- D (2)
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Noting that the star line angle is fixed, the rate of change

of stabilization reference error is found from (1) and (2)
to be

e

6. - T+x0D - (3)

Gyro drift 1s usually modeled as having a random
component plus components which depend both linearly and
quadratically on the acceleration of the instrument. In
this problem, we model only the random component, which
implies either space flight‘operation in free fall, or
adequate callibration of the specific force depehdent com-
ponents. The random drift rate might be modeled in dif-
ferent ways, but the most Important characteristic is a
random wa1k2. Use of Just a random walk to model the gyro
drift rate permits an analytic solution and preserves the
dominant nature of the problem.

D = n(t) .
n(t) = an unblased white noise (4)
(n(t;) n(ty)) = N §(t, - t)
The coefficient, N, in the autocorrelation function for
the white noise is also the (constant) power spectral
density for the noise. Its numerical value is best deter-

mined from the resulting mean squared value of gyro drift.

(D (£)%) =nt | (5)
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Thus, for example, if the RMS drift rate after one hour of
operation followling callbration were supposed to be

1072 A

deg/hr, the appropriate value of N would be 10~

2 hr'3._

deg
The star tracker indicates the angular error between
the star line and the platform reference line. But this
indication 1is corfupted with noise which 1is considered
additive. No initial filtering of the nolse 1s presumed
done as any desirable filtering will appear in the Drift

Compensation Function to be determined. Hence, the noise

over-all system, and can reésonably be approximated as a

white noise.

eind =es -Sp +r (t)
r(t) = unbiased white noise (6)
{r(ty) r(ty)> = R&(ty - t;)

The actual star tracker noise 1s a wlde band noise rather
'than.a truly white noilse, and R isxchosen to be the power
density of the actual noise in the low freduency region.

The system diagram corrésponding to thils model is
shown 1in Flg. 2.
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THE FORM OF THE COMPENSATOR

The error compensation 1is deri?ed by first deter-
mining the optimum estimate of the stabilization refer-
ence error from the star tracker lndication, and then
developling a gyro torquing signal which will‘drive the

estimated error to éero. The minimum varlance estimator

as derived by Kalman and Bucy5 has the followiﬁg general
form:
_ . T )
System dynamics: X~ Fx+ + Gn (7)
0o
Measurement: mz=Hx+r (8)
d A _ A T T - A
‘Estimator: =X =FX +| |+ EHR (m=-H%) (9)
(0]

Covariance equation: é “FE+EE T+ 6NG - EH'R™'HE (10)
All errors are considered to have zero mean, or to have

mean values calibrated out. The gyro torquing signal, T,
appears both 1n the system dynamics .and in the estimator.

The gyro is presumed to respond perfectly to this commahd;
thus it plays no role in the estimationAprocess. The
present problem is put into thls general fofm by means of

the followling definitions:

ee
)_(:[ ] m‘—‘ee.md

D

o \ o (11)
F = G = H=[1 o] )
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The separate elements of the covariance matrix for the

estimation errors are also identified.

- ~ - 2 R — -
e\l— ((ee se) > A e” e‘z
e.= e, = <(8e-6)(D-D)) E =

A e e
€= {(D-D)*» | 2 i
Use of the definitions (11) and (12) in (9) gives
8, = ' d-8e)
729 T DX T+ 7€, (@cimd - B¢ (13)
A ~
g-t-D :';i‘e“(eemo("ee) - (1)

These are the differentiai equations for the optimum esti-
mates of the stabilization refergnce error and gyro drift
rate respectively. | l

Rather than just estimate the stabilization refer-
ence error, we wish to drive the estimated error to zero.
The gyro torquing signal is used for this purpose. Gen-
erate T so that §e = 0 at all times; hence j‘Tt ge: o
also. Equations (13) and (14) then become



-

- A _ &, 69e ind
T=-0 A - (15)
_B = %, O¢_ind (16)

at R .
These equatlons define the desired relation between the
star tracker indication of the stabilization reference
error and the gyro torquing signal. The block dlagram

of this Drift Compensation Function is shown in Fig. 3.
The optimum compensator 1s seen to be a parallel connec-
tion of a proportional and an integral path. The propor-
tional gain is the ratio of the mean squared error in

the estimate of the error angle to the power denSity of
the measufement noilse. The better the quality of the
curfént estimate of 99, the less proportional gain is
used to feed the star tracker measurement forward. The
integral path results from the estimate of the gyro drift
rate. The gain from the angle mea;urement to the drift
rate estimate 1s proportional to the correlation between
the errors in estimates of angle and drift rate. In-
creased star tracker nolse relative to the estimation
errors reduces both gains. The integrator in the com-
pensator provides the infinite gain at zero frequency

required to compensate the infinite power density of gyro
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drift at zero frequency. (Note that the power density
spectrum of the drift rate is N/m2 .) |

SOLUTION FOR THE GAINS

The compensator 1s now defined in terms of the ele-
ments of the error covarlance matrix. The differential
equation for this matrix, (10), has a known solution formu,
‘but the analytic manipulations are simpler if an alternate
approach 1s taken. The problem can be reduced to the
solution of an algebraic matrix quadratic equatibn'and a
linear matrix differential'equation6. First, define S to

be a solution of the algebralc equation

FS + SFT + oNaT - suTR™IHS = 0 - an
Then express E as N
E=S+6E (18)

The differential equation for §E is found from (10) to be

§E = FAE + §E FL - {E H'R 1H 6 E (19)
where ‘
F=F-sHR ~ (20)

Finally, define

P =gE" (21)
Then the differential equation for P is
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(4
=~ P§EP

=-PF - PP + HRH

g

(22)

which 1s linear and has a known solution form.
A particular solution, P, , to (22) is found by
setting P = 0. This yields

P, F+ Flp, = HRIH (23)

The complete solution to (22) can then be written

P(t) = B(t) [P(0) - Po | B(£)T + Poy (24

where 3(t) is the state transition matrix defined by

F=-T g 5 (0) =T (25)

If the elgenvalues of - F lie in the left half plane,
P,, corresponds to the steady state value of P(t).

In general, equation (17) has (2n)!/(n!)2 distinct
7

solutions’ where n 1is the dimension of the state vector.
Some of these solutions may be non§ymmetric or contain
complex elements. Any solution of.(17) may be employed

to obtain equation (22) and hence the time history of E(t).
Since the solution to equation (10) for a given 1n1tia1
conditlion 1s unique, the same time history will be obtained
regardless of which solution of (17) 1s employed. If the
state is observable by the measurements and controllable

by the process nolse, equation (17) has unique positive
and negative definite solutions (Ref. 6 for positive def-
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inite solution). For these positive and negative definite
solutions, the matrices F and -F respectlvely have eigen-
values in the left half plane (correspond to stable sys-
tems). From the standpoint of algebraic manipulation,
the positive and negative definite solutlions seem to be
the easiest to work with. In the present problem, the
negative definite solution is employed in order to simplify
the formulation of the initial condition for (22) in case
II. If the positive definite solution had been employed,
the initial value, P(0), would have contained an infinite
element and'a limiting process would have to have been
carried along throughout the algebra.

Having the solution for P(t), E(t) is written

E(t) = S + P(t)™1 (26)

For the problem at hand, the required matrices are
defined by (11). R and N, in this case, are the scalar
power densities for the star tracker noise and the gyro
drift random walk generator respecfively. Of the two real
symmetrical solutions to (17) in this case, one is the
positive definite steady state value of the error covari-

ance matrix.

- L -
PNl‘*P\% (NR)™

m
3
I

(27)

\ 3 L
(NRY?® 25 NTRE
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Take S to be the negatlive definite solution.
- 2% N % R™ (NRV% ]
S = (28)
(NR)/2 SN R'ﬁ:
Then F given by (20) is

o N R 1
FE=l (29)
~NE R 0
and the solution to (23) is -
(- NTA R o) B
POO = 3 3 (30)
- = oL
i 0 2" N R

It may be verified that E_, 1s properly given by the sum

of S and the inverse of P, . Integration of (25) yields
[cosat - sin at 2.0 s at’]

~at ‘
ol =] e (31)

- L ginat sinat+ cos at
| a _

where

Y l A\
a= 2 PNARY (32)

The solution will now be written out for two cases.
Case I: No initial knowledge of error angle or drift rate.

One case of practical importance 1s that in which
there is no prior information on the stabilization error
angle or gyro drift rate. Of course, it 1s necessary

that the star be acquired within the field of view of the
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star tracker, but that field is considered wide relative to

the desired stabilization reference accuracy. Hence, the
initial estimation error variances are consldered essen-
tially infinite, or P(0) is the zero matrix. This initial
condition would typically apply when the system 1s first
employed following a long delay since a calibration. This'
would be the case 1f the platform were to be used 1n the
vicinity of a planet after having been inactive during

the journey from Earth. With P(0) = 0, equation (24)

becomes
- _ .
V= (1+25%-125¢) @ ot _ 252 e—mﬂ
a
_ |
PO = 753 | | (33)
_ 2:32 e_‘za't _I_ [I-(I+ZSQ+ZSC)] éth
o 2a*
where - ‘ ‘ -
8 = sin at
(34)
¢ = cos at
The solution for E(t), from equation (26), 1is
-2at -4at
- ZGR I-4scCe - @
eﬂ - (‘_ e—ldt)z_ ’+Sl e_zat (35)
. ' 2 +
|___ “1C\t + L} 2 "1“
e:2&4?\( ) +u5te (36)

21 “_e—‘lat)z_ 4 gt e-—zat
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-2at -yat
| +4SCe - @

U_e-lat)l_._’sze—Zc\t (37)

Alternate forms for these expressions are

sinh 2at— sin 2at
o R sinh*at - sin?at ' (38)

g
i

2 L2

- 2 sinh“at + sin*at

= )a ~

_ 3, sinh2at + sin 2at 46
€= 2a°R sinh*at — sin*at (40)

These covariance matrix elements are plotted in Fig. 4.
The variance of the stabilization reference.error, €41 and
of knowledge of gyro drift rate, €509 both start at Infinitely
large values according to»the assumption of no prior informa-
tion. Thelr covariance, €sy = €15 » does likewise. All
elements reduce monotonically toward thelr steady state values,
coming within 10 percent of thelr final values in the neigh-
borhood of at = 2, The gains in the drift compensation func-
tion are proportional to €1 and 921' These galns would,
of course, be restricted to finite values. Thils limitation

should incur little loss of performance since the 1deal pro-
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portional gain, 1s within a factor of 100 times 1its steady-
state value by at = 0.02. The integral galn reaches thils
same factor by at = 0.18.

As an example of the magnitude of the inverse time

constant, a, take N to be 107" deg2 hr~3 which gives a

gyro drift rate random walk having an RMS value of 1072

deg/hr after 1 hour. Also, suppose the star tracker noise

i1s a wide band process ylelding an RMS value of 1 millira-

6., 32

dian through a 1 cps bandwidth. R i1s then 10 rad®sec.

For these values,

I/‘+

az=12N"R

_ |
_ [/ 107% . 3400 a
- ,_*.,0—5(5-7'3)1

= 2.%29 hy

With these illustrative figures, the transient period for
the covariance matrix elements and for the Drift Compensa-
tion Punction gains 1s about one hour in duration. This

transient perlod increases 1if the pepformance of the star

tracker 1s degraded relative to that of the gyro.

Case II: No initial knowledge of error angle but gyro
drift estimation at steady state.

This case occurs whenever system operation has
reached 1ts steady state, and then a reorientation of the

platform is called for. If the reorlentation cannot be
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accomplished with precision, we may take the initial variarnce
of the error angle to be essentially infinite while the ini-
tial variance: of the drift rate estimate remains at its
steady state value.

- - 3
e, (oy=00 €5, (0)= FaR (41)

Now

p(o) = [Er0) - 5] (42)

Using S from equation (28) and the initial conditions (41),

the initial value of P is independent of ezl(o) and is found

to be '
0 0 | |
P(o) = , | (43)
0 7R
Equation (24) then gives
- (1- 25c)e " < 5(c-9) g 2t
- -‘
P(t) = TaR | (L)
~2at -
Ls(c-s)e™ i'-&(;— 2ste”*t)

using the notation (34). The covariance matrix elements are

then expressed by (26) as

—2at
e = 24R 1+ (1—2sc —2s?) €

0 | = (1-2sc + 25%) e~ 2at

(45)
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(1+ 25 151)6—1af
_ 2 i — (! c~-
€ = R |- (\- %sc+25%) g~ 20t (46)
_ _ . S‘Z —2a-t
e = 4aR I— (1-2sc—2S")€ (47)
or alternatively as
—~2atT
_ | + (cos 2ot —sin2at) €
e, = %ak = (1= <os Zat —5vn Zat) e=74E (18)
. -2at
e = 2aR | — (o5 2at + s\n2at) € C (s9)
S {— (2~ cos2at -sin 2at) g~ 2at
-2at
_ upap - (cs 20t - sinat)e 2o .
€12~ |- (2-cos2at — s\n 2at) e~ 24T (50)

These covarlance matrix elem?nts are plotted in
Fig. 5. The varlance of the stabiliéation reference error,
€1 starts at an infinite initial value and the variénce
of thg gyro drift rate estimate, €505 starts at 1ts steady
state value according to the prescribed initilal conditions.
The error angle variance in this case converges within 10
percent of its steady state value by about at = 0.5, 4 times
fastef than in Case I with no prior information about gyro
drift. In fact, the initial transient in €11 in this case,
for at< 0.5, is very closely approximated by the €11 transient
in Case I with the time scale shortened by a factor of 4.
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The value of prior gyro calibration is clearly evident. The
other covariance matrix elements come within 10 percent of
their‘steadyfstate values at about at = 2 . Note that the
gain from angle measurement to drift rate estimate, which

is proportional to €51 starts from a zero 1initlal value.

This is due to the poor initial knowledge of error angle
compared with the finite variance of the initial drift rate

estimate.

APPROXIMATE EXPRESSIONS FOR THE GAINS

The proportionél gain in the Drift Compensaﬁion
Function, as indicated in Fig,l3, is eil/R. The integral
gain is e21/R. Exact analytic expressions for these gains
are thus given by the co?ariahce matrlix expressions derived
above. As an aid to practical implementation of such a
system, approximate expressions for these gains which are of

simpler form are suggested here.

'; -0.7at
Proportional gain = 24 kl + E{z—f e Ta ) (Case 1)
~2.3at
zla(l-*rf?&e?q) (Case II)
~0.5at
Integral gain =~ 2&1(1 +- (%(E)" e ) (Case I)
—at
l+ e 2
~ 2a* ( ) (Case II)
2 ~2at
L+ 2z
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Over most of the time interval (0.01<at<c© ) these ex-
pressions are in error by less than a few percent. The

maximum error in this interval 1s 14.3 percent.

CONCLUSIONS

The deslgn of a star tracker ailded inertial orienta-
tional reference system has been determined which minimizes
at every time the mean squared error angle. The error referred
to is the platform orientational error which would exist if
the stabllization servo system drove the gyro output angle to
zero. The compensatlion of gyro drift is thus rendered inde-
pendent of platform dynamics and imperfect base motion isola-
tion. The statemené of the design problem 1ncludes a rea-
sonable statistical characterization of the gyro drift rate
and the star tracker noise. A complete analytic solution
to this problem has been found which provides analytic ex-
pressions for all required system parameteré as general
funétions of the relative quality of the gyro and star tracker.
These results should be useful as a guide to the design of
practical systems of this type and as a reference against

which to compare theilr performance.
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FIGURE CAPTIONS

Diagram of Orientation Stabilization System

Block Diagram of the System Model

The Optimum Drift Compensation Function

Covariance
Case I:
Covariance

Case II:

Matrix Elements
No initial information
Matrix Elements
No initial stabilization error information,

gyro drift estimation at steady state
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Figure 3 The Optimum Drift Compensation Function
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Covariance Matrix Elements

information, gyro drift estimation '

Case II: No initial stabilization
© at steady state
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